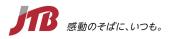


— Share the Smart Future — スマートモビリティへの取り組み

2023/9

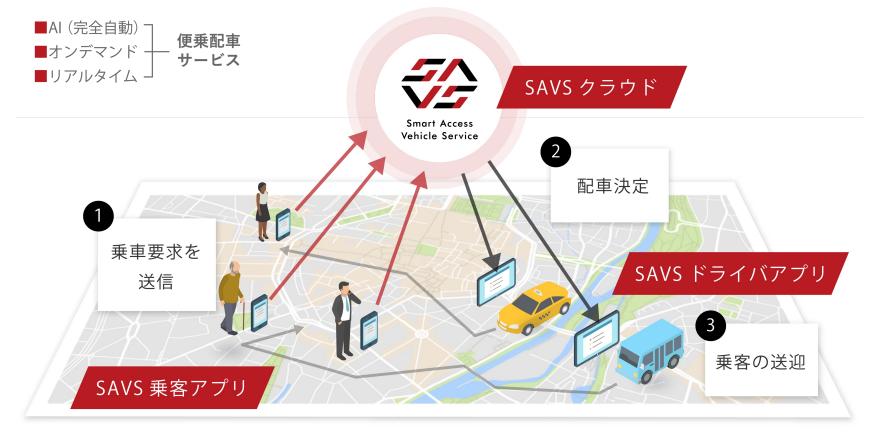
公立はこだて未来大学発ベンチャー

株式会社未来シェア https://www.miraishare.co.ip/


1. 会社概要

会社概要

		<i></i>	サポータン キャシェフ							
会	社	名	株式会社 未来シェア							
			(英名:Mirai Share Co., Ltd.)							
設		立 2016年7月21日								
本社	t所在	E地	函館本社 : 〒041-0806 北海道函館市美原2-7-21							
事	業	所	横浜事業所 :横浜市西区みなとみらい3-7-1 オーシャンゲートみなとみらい8F							
			つくば事業所:つくば市吾妻1-5-7 ダイワロイネットホテルつくばビル2F							
取紛	節役会	美	中島 秀之 : 札幌市立大学理事長・学長 公立はこだて未来大学名誉学長 工学博士							
			松原 仁							
			公立はこだて未来大学特任教授 工学博士							
代表	₹取綺	静 役	松舘 渉 : 株式会社アットウェア取締役 株式会社駅探社外取締役							
取	締	役	平田 圭二 : 公立はこだて未来大学理事・副学長 工学博士							
			野田 五十樹 :北海道大学大学院情報科学研究院情報理工学部門教授 博士(工学)							
			金森 亮 : 名古屋大学特任准教授 博士(工学)							
			岩村 龍一 :株式会社コミタクモビリティサービス取締役会長							
主	要 株	主	株式会社アットウェア、コミタクモビリティサービス株式会社、株式会社JTB							



システムの概要

AIによるリアルタイムな便乗配車計算を行うサービス。

タクシー(デマンド交通)と路線バス(乗合交通)の長所を掛け合わせ たオンデマンド配車技術により、都市レベルでの最適交通を実現。

オンデマンド・リアルタイム 便乗配車

1. デマンドに応じて車両が走行

2. 異なるデマンドが発生

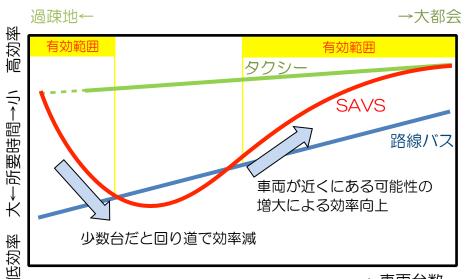
3. リアルタイムにルート最適化

AIによる高速計算で オンデマンド・リアルタイム **便乗** 配車を実現

空き座席の有効活用で空車と待ち時間と走行距離を削減 無駄のない公共交通を実現

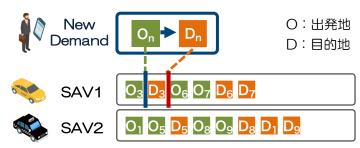
研究の背景(産総研~はこだて未来大学)

□ 2001年:産業技術総合研究所にてデマンドバス配車シミュレーションの研究 を開始、その後公立はこだて未来大学にて研究を継続


■ 2011年:はこだて未来大学にてNPO法人「スマートシティはこだて」設立

□ 2013年:実車両を用いたフルデマンド函館実証実験を開始

□ 2015年:4日間・30台・300人以上の乗客の送迎を成功

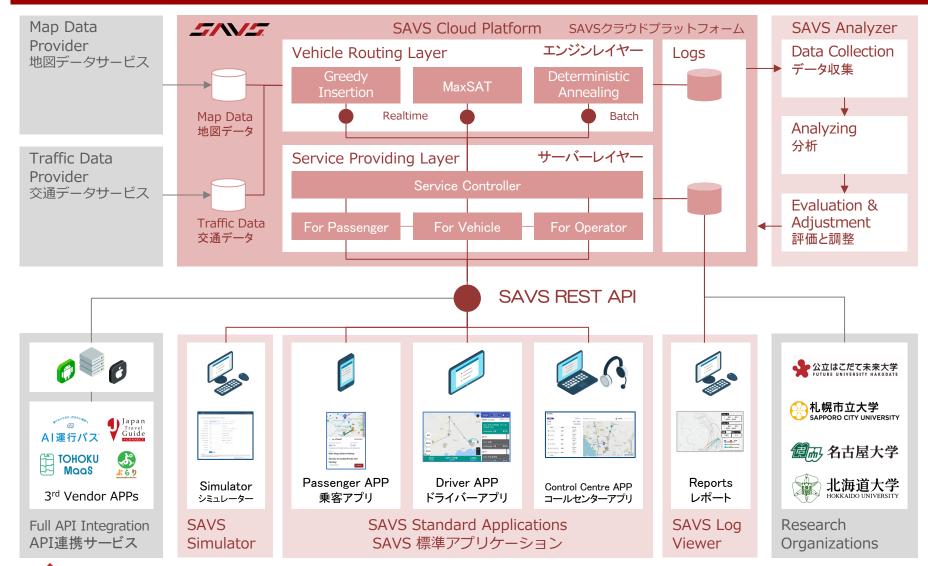

■ 2016年:はこだて未来大学発ベンチャー「未来シェア」設立

■ 2001年シミュレーション結果からの考察

→ 車両台数

■ 逐次最適挿入法(Greedy Insertion)

■ 道路ネットワークデータの経路探索



道路ネットワークデータを探索し、便乗配車による時間の遅れ、迂回時間等を考慮した、迎車予定時刻・到着予定時刻を計算

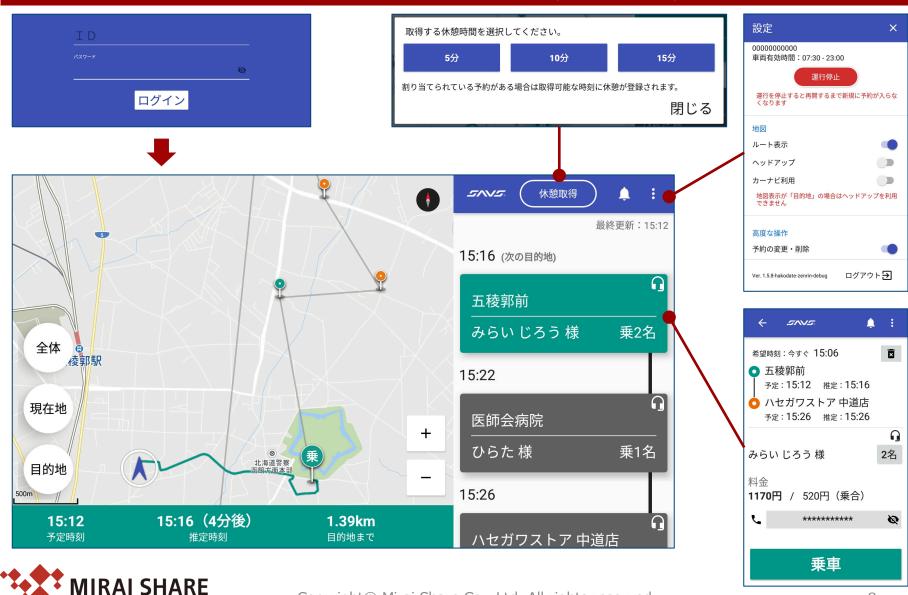
2013 世界初のオンデマンド・ドアtoドア・ リアルタイム・乗合・無人配車実験を実施

SAVS システム基本構成

SAVS 乗客アプリ(Webブラウザ)

新規登録・ログイン デマンド作成開始 乗車地点•降車地点 選択

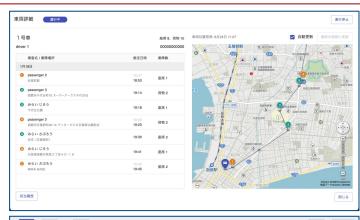
希望時刻•座席数 選択 乗車予定時刻·料金 確認 配車確定キャンセル


キャンセル

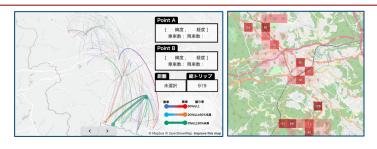
SAVS ドライバーアプリ(Android)

SAVS コールセンターアプリ(Webブラウザ)

デマンド一覧・デマンド詳細



乗客検索・デマンド作成



運行予定・運行スケジュール

SAVS Log Viewer

SAVS API 連携・各種3rdベンダーアプリケーション

株式会社 NTTドコモ

伊那ケーブルテレビジョン 株式会社

テレビリモコンで デマンド交通を予約

株式会社 JTB

大日本印刷 株式会社

From the

Stations 駅から始めよう

デジタルサイネージ からデマンド交通を 予約 運行状況をリアルタ イム表示

JR東日本

株式会社 駅探

名古屋鉄道

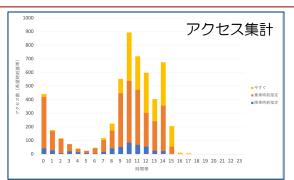
中京エリアで利用可能な MaaSアプリ

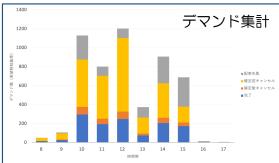
名古屋市「エキ・シロ MaaS」

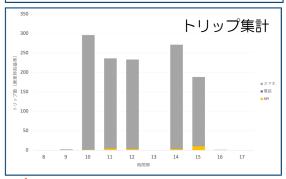
• 春日井市 「move! かすがい」

株式会社 システムオリジン

駅探 MaaS ソリューション

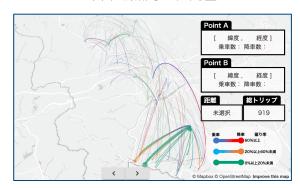

> タクシー配車システム「テレハイAVM」 とSAVSとの連携 タクシー配車 / リアルタイム乗合配車の ハイブリット運用を一つのシステムにて 実現



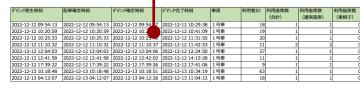

4. SAVS 出力データ・統計レポート

SAVS 運行により得られるデータの例

月間統計データ


SAVS Log Viewer

乗車地点・降車地のヒートマップ



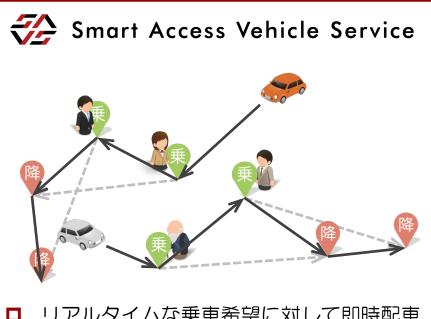
乗降地点間の相関図

デマンド詳細データ

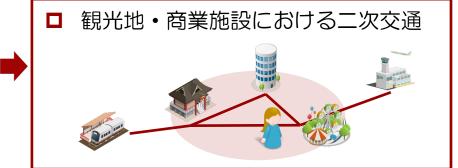
デマンド発生時刻、終了時刻、座席数等

乗降希望時刻、乗降予定時刻、乗降時刻、乗降位置・場所名等

希望乗車時刻	予定乗車時刻	乗車時刻	乗車緯度	乗車経度	乗車場所	希望降車時刻	予定降車時刻	降車時刻	降車緯度	降車経度	降車場所
	2022-12-12 10:16:07	2022-12-12 10:18:03	41.81666746	140.7505375	ゆず庵函館美原店	2022-12-12 10:40:00	2022-12-12 10:28:04	2022-12-12 10:29:38	41.84	3 140.7679	公立はこだて未来大学
2022-12-12 10:30:00	2022-12-12 10:30:00	2022-12-12 10:30:52	41.8109	140.7494	サッドラ富岡中央店		2022-12-12 10:43:45	2022-12-12 10:41:09	41.84	.3 140.7679	公立はこだて未来大学
2022-12-12 11:15:00	2022-12-12 11:15:00	2022-12-12 11:15:52	41.81565511	140.7538144	みはら歯科矯正クリニック		2022-12-12 11:24:48	2022-12-12 11:3	41.83	7 140.7361	函館トヨペット石川店
2022-12-12 11:20:00	2022-12-12 11:20:01	2022-12-12 11:18:42	41.81433945	140.7572925	MIRAI BASE		2022-12-12 11:39:55	2022-12-12 11:42:55	41.84	3 140.7679	公立はこだて未来大学
	2022-12-12 12:08:03	2022-12-12 12:09:11	41.8154375	140.7525933	亀田交流プラザ(正面玄関	前)	2022-12-12 12:27:36	2022-12-12 12:24:50	41.84	3 140.7679	公立はこだて未来大学
2022-12-12 12:51:00	2022-12-12 14:09:24	2022-12-12 14:06:12	41.8413	140.7679	公立はこだて未来大学		2022-12-12 14:19:37	2022-12-12 14:15:28	41.814339	5 140.7572925	MIRAI BASE
	2022-12-12 17:46:29	2022-12-12 17:40:41	41.8413	140.7679	公立はこだて未来大学		2022-12-12 17:57:59	2022-12-12 17:41:06	41.81	140.7524	サッドラ函館美原店
2022-12-13 10:20:00	2022-12-13 10:23:38	2022-12-13 10:26:50	41.81433945	140.7572925	MIRAI BASE		2022-12-13 10:36:20	2022-12-13 10:34:19	41.84	3 140.7679	公立はこだて未来大学
	2022-12-13 10:46:07	2022-12-13 10:46:48	41.81666746	140.7505375	ゆず庵函館美原店	2022-12-13 11:10:00	2022-12-13 10:58:04	2022-12-13 11:04:12	41.84	3 140.7679	公立はこだて未来大学

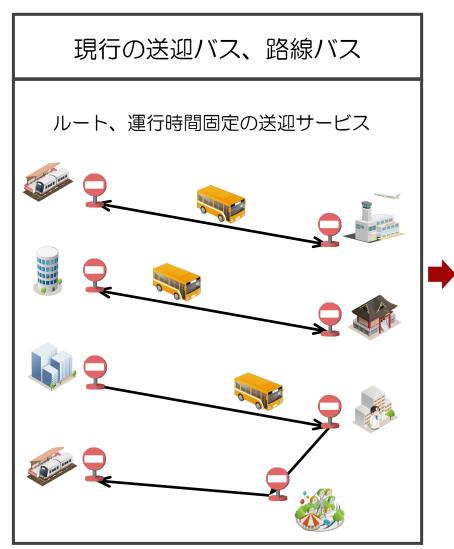

希望乗車時刻と	希望降車時刻と	移動時間	最短移動時間	最短移動時間と	不使時間	不使時間	乗合	予約者	チャンネル
乗車時刻の差	降車時刻の差			移動時間の差	(今すぐ、乗車時刻指定)	(降車時刻指定)			
	00:10:21	00:11:34	00:07:57	00:03:37		00:13:58	0	PASSENGER	スマホ
00:00:52		00:10:16	00:09:45	00:00:31	00:01:23		0	PASSENGER	スマホ
00:00:52		00:16:03	00:05:48	00:10:15	00:11:07		1	PASSENGER	スマホ
-00:01:17		00:24:11	00:08:42	00:15:29	00:15:29		1	OPERATOR	API
00:05:08		00:15:39	00:08:05	00:07:34	00:12:42		1	PASSENGER	スマホ
01:15:12		00:09:15	00:08:13	00:01:02	01:16:14		0	OPERAT	
00:01:19		00:00:25	00:07:30	-00:07:05	00:01:19		0	OPERATOR	電話
00:06:50		00:07:28	00:08:42	-00:01:14	00:06:50		0	PASSENGER	スマホ
	00:05:47	00:17:24	00:07:57	00:09:27		00:15:14	1	PASSENGER	スマホ

遅れ時間、乗車時間、乗 合発生有無、予約元等

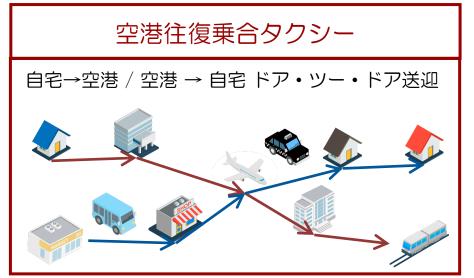

1. オンデマンド・リアルタイム配車 乗合タクシー


ドア・ツー・ドア乗合交通の用途に 応じた活用

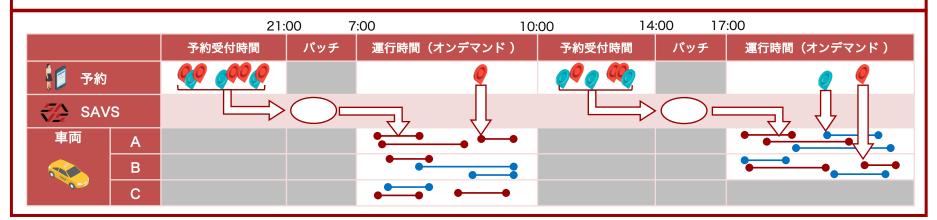
- リアルタイムな乗車希望に対して即時配車
- 配車済み車両の空き座席を乗合いに活用



2. オンデマンド・リアルタイム配車 乗合バス


路線図、時刻表のない送迎バス

ルート・時間を固定しない送迎サービス 大量バッチ輸送 → Just In Time 輸送



3. 事前予約 + オンデマンド乗合送迎サービス

事前予約とオンデマンドを組み合わせた 朝・夕 従業員送迎サービス

4. 事前予約タクシー配車計算サービス

前日までのタクシー配車予約

数日前から配車予約を受付

	~	~ +0.00		
乗客	希望乗車 時刻	希望降車 時刻	乗車地点	降車地点
Aさん	7:00		自宅	●馬尺
Bさん	7:00		自宅	●馬尺
Cさん		9:00	自宅	▲病院
Cさん	10:00		▲病院	自宅
Dさん	8:00		●駅	■病院
Eさん		9:30	自宅	■病院
Eさん	10:30		■病院	Oスーパー
Eさん	11:30		Oスーパー	自宅
Fさん		9:00	自宅	●馬尺
Gさん	8:00			■病院
Gさん	10:00		■病院	●馬尺
Hさん		9:45	●駅	Oスーパー
Hさん	11:00		Oスーパー	●馬尺
Iさん	10:30		●駅	▲病院

当日のタクシー配車計算

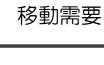
最小台数での送迎順序を計算

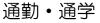
車両	乗客	乗車予定 時刻	降車予定 時刻	乗車地点	降車地点
1号車	Aさん	7:00	7:20	自宅	●馬尺
	Dさん	8:00	8:15		■病院
	Cさん	8:35	9:00	自宅	▲病院
	Eさん	9:20	9:30	自宅	■病院
	Gさん	10:00	10:20	■病院	●駅
	にん	10:30	11:00	●駅	▲病院
	Eさん	11:30	12:00	Oスーパー	自宅
2号車	Bさん	7:00	7:30	自宅	●駅
	Gさん	8:00	8:20	●駅	■病院
	Fさん	8:40	9:00	自宅	●馬尺
	Hさん	9:20	9:45	●駅	Oスーパー
	Cさん	10:00	10:15	▲病院	自宅
	Eさん	10:30	10:50	■病院	Oスーパー
	Hさん	11:00	11:30	Oスーパー	●駅

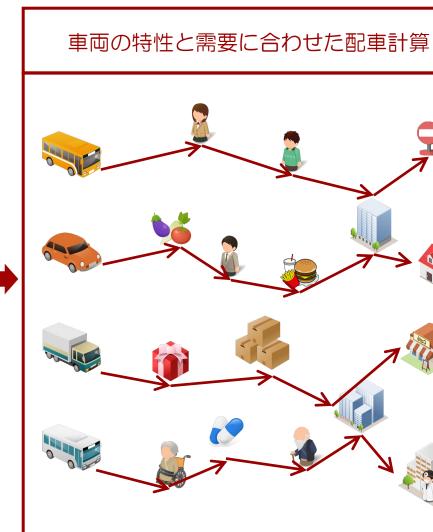
5. 物流•宅配•貨客混載配車

車両の特性

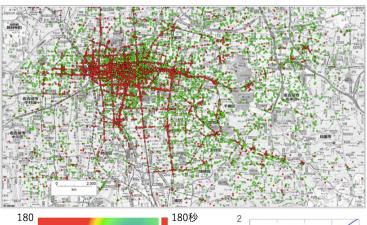
キャパシティ

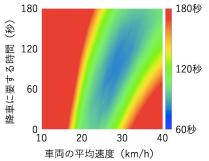


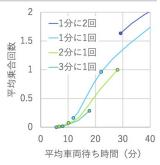




通院

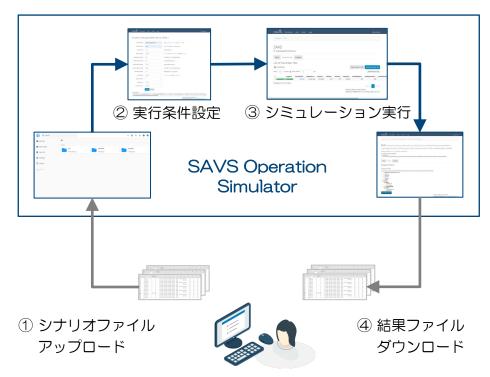





6. シミュレーション・シミュレーター

マルチエージェントシミュレーション

仮想空間上に道路ネットワークを持つ都市を 再現し、乗客の移動需要に対してドライバー へ運行指示と送迎を仮想的に実行します。 各種トリップデータを基にしたシミュレー ションにより運行効率の調査を行います。



SAVS オペレーション シミュレーター

シミュレーション実行環境のクラウド版を月額でライセンス提供します。

各種運行条件に対する網羅的、再帰的シミュレーションの実施が可能となり、より厳密な検証と評価を行うことができます。

6. 未来シェアの取り組み

都市レベルの全体最適交通・移動とサービスの連携

- □ タクシー・バス・送迎・配達など、あらゆる車両の走行の効率化
- □ 教育・医療・観光等、移動を伴う新たなサービスの創出と質の向上
- □ 赤字バス路線・免許返納・ドライバー不足・交通渋滞・災害時の交通 等、都市が抱える社会課題の解決

6. 未来シェアの取り組み

交通に関わる社会課題の解決

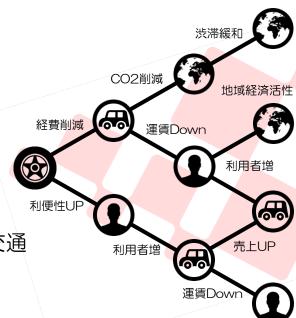
交通空白地の移動手段

- 高齢者の免許返納促進
- 過疎地域の交通手段確保
- 外出の促進と健康維持

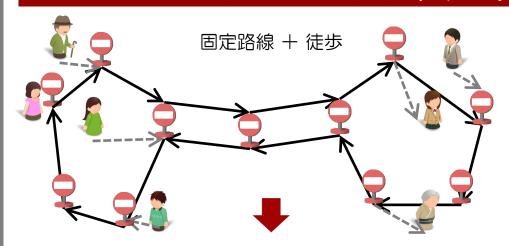
ドライバー不足

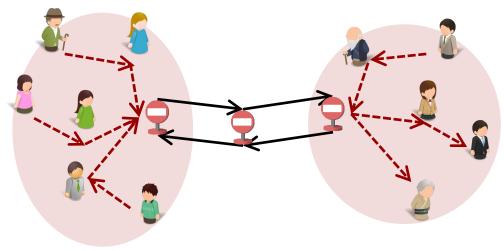
- 運送・輸送の効率化
- 需給バランス適正化
- 労働条件の改善

都市計画


- 企業・住民・観光誘致
- 渋滞緩和・災害対策
- 交通維持への支出抑制

AI・ICTプラットフォーム による課題解決


- 事業者に対する課題解決:効率的な配車手段の提供 乗客不在の走行を減少、車両あたりの移送乗客数を増加 経費の削減と利用者数増加
- 利用者に対する課題解決:移動手段利用格差の解消 移動手段利用格差の解消、便利で低コストな移動手段を提供
- 社会に対する課題解決:環境保全、地域経済の活性化 渋滞緩和とCO2排出量削減などの環境保全、災害発生時の交通 手段確保、人々の移動を促し地域経済の活性化に貢献



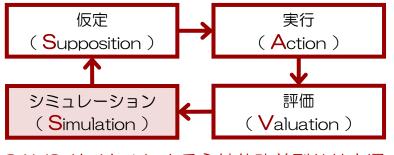
6. 未来シェアの取り組み

シミュレーション + アジャイル改善:永続的成長型の公共交通

固定路線 + ドア to ドア オンデマンド

→ : 固定路線 --> : オンデマンド

MIRAI SHARE


固定路線公共交通

- 運行距離の長さに比例する運行時間間隔
- 利用者へバス停までの移動と待ちを強制
- 移動需要と連動しない定時定路線運行
- 年単位・数年単位の運行計画見直し

固定路線 + オンデマンド公共交通

- 中短距離・短時間隔路線 + オンデマンド
- 利用者の要望と乗車地点に合わせた送迎
- リアルタイム需要をベースの便乗配車計算
- アジャイルな計画変更前提の繰り返し改善

SAVS サイクルによる永続的改善型公共交通